Chem12 Kinetics: Exam problems-50

- 1) Given: $BaCO_3(s) + 2H^+(aq) -> Ba^{2+}(aq) + H_2O(l) + CO_2(q) + heat.$ A change that would decrease the rate of formation of CO₂(q) is:
- a) finely powder the $BaCO_3(s)$
- b) increase the temperature
- c) add water to the system
- d) increase concentration of H+
- 2) Which one of the following is the basic premise of "Collision Theory".
- a) At high temperature, more gas particles collide than at low temperature.
- b) Chemical reactions can occur only if reacting particles collide.
- c) In order to react, particles must have the correct collision geometry.
- d) Catalysts affect the rate at which the reacting particles collide.
- 3) A reacts with B to form C and the rate data are as follows:

Experiment	initial	initial	initial rate of formation
	[A]	[B]	of C in moles/sec
1	0.15	0.15	0.30
2	0.30	0.15	0.60
3	0.15	0.30	1.20
4	0.30	0.30	2.40

What is the rate law expression for this reaction?

a) rate =
$$k[A][B]$$
 b) rate = $k[A]^2[B]$ rate = $k[A]^2[B]^2$

c) rate =
$$k[A][B]^2$$
 d)

4) At 25°C and considering only the nature of the reactants, which one of the following reactions most probably has the highest rate?

a)
$$Ca^{2+}(aq) + CO_3^{2-}(aq) -> CaCO_3(s)$$

b)
$$H_2(g) + I_2(g) -> 2HI(g)$$

c)
$$CH_4(g) + 2O_2(g) -> CO_2(g) + 2H_2O(g)$$

d)
$$C(s) + O_2(g) -> CO_2(g)$$

- 5) Given: $CaCO_3(s) + 2H^+(ag) -> Ca^{2+}(ag) + H_2O(l) + CO_2(g) + heat$ which one of the following changes would increase the rate of evolution of $CO_2(g)$?
- a) Decrease the temperature b) Increase the Ca²⁺ concentration

- c) Finely powder the CaCO₃(s) d) Add water to the system
- 6) Which one of the following describes one effect of a catalyst?
- a) It increases the total energy of the products
- b) It decreases the energy released in a reaction
- c) It provides a new mechanism for the reaction involving a lower reaction energy
- d) It speeds up the rate of reaction but is used up in the overall process
- 7) Which one of the following terms refers to the slowest step in a reaction mechanism?
- a) not catalyzed
- b) Rate-determining
- c) Activated complex

- d) Activation energy
- 8) In a closed system, the following reaction occurs:

$$CaCO_3(s) + 2HCI(aq) \rightarrow CO_2(g) + H_2O(l) + CaCl_2(aq)$$

Which of the following, would be useful in measuring the reaction rate?

- a) mass
- b) [H₂O]
- c) pressure
- d) [Cl-]
- 9) The following reaction occurs at constant T and constant volume in a closed system:

$$CaCO_3(s) + 2H^+(aq) + 2CI^-(aq) -> CO_2(g) + H_2O(I) + Ca^{2+}(aq) + 2CI^-(aq)$$

Changes in which of the following would be useful in experimentally measuring the rate of the reaction?

- a) The system's mass
- b) The system pressure
- c) The concentration of water
- d) The concentration of the Cl-(aq)
- 10) An elementary process is one in which:
- a) two or more elements unite to form a compound
- b) a compound breaks up into its constituent elements
- c) particles collide with less than the energy of activation
- d) usually two particles collide and undergo chemical change

11) For the reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

the reaction rate for the formation of $NH_3 = 4.0x10^{-4}$ mol/s. Find the rate of consumption of H_2 in mol/s.

a) 2.0x10⁻⁴

b) 6.0x10⁻⁴

c) 1.2x10⁻³

d) 4.0x10⁻⁴

12) $ZnO(s) + CO(g) -> Zn(g) + CO_2(g)$

H < O, What is the

change in the Gibbs free energy (G).

a) G < 0

b) G > 0 c) G = 0 d) G could be + or -, but not zero.

13) Which one of the following reactions has the highest rate at room temp?

a) $2H_2(q) + O_2(q) -> 2H_2O(q)$

b) $Mg^{2+}(aq) + 2OH^{-}(aq) -> Mg(OH)_{2}(s)$

c) $C_2H_5OH(I) + 3O_2(g) -> 2CO_2(g) + 3H_2O(g)$

d) $2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) -> 2Mn^{2+}(aq) + 10CO_2(q) +$ $8H_2O(g)$

14)
$$Zn(s) + 2H^{+}(aq) + 2CI^{-}(aq) -> Zn^{2+}(aq) + 2CI^{-}(aq) + H_{2}(g)$$

 $H = -95kJ$ [HCI] = 0.2 M

- a) Give two ways (other than by using a catalyst) in which the rate of the reaction can be speeded up.
- b) Calculate the energy released in the above reaction if 2.3q of Zn reacts with excess acid.
- 15) For the reaction, A(g) + 2B(g) -> C(g), the rate law is Rate = k[A][B].
- a) What is the total order?
- b) What is the effect of doubling the concentrations of A and B?
- 16) Which of the following statements about catalysts is true?
- a) Catalysts provide energy for reactions
- b) Catalysts provide a lower energy pathway for a chemical reaction
- c) Catalysts are always in the same phase as the reactant molecules
- d) Catalysts can change endothermic reactions into exothermic reactions

17) For the reaction $A_2(g) + B_2(g) \rightarrow 2AB(g)$, the rate law expression is:

rate = $[A_2][B_2]^2$. Give the reaction order . a) 1 b) 2 c) 3 d) 4

- 18) Coal dust is found to burn more rapidly than a lump of coal. The factor that increases the rate of this chemical reaction is the:
- a) presence of a catalyst
- b) surface area of the reactants
- c) concentration of the reactants
- d) chemical properties of the reactants
- 19) Define: Activated Complex
- 20) The following data were obtained for an experiment on reaction rates in which equal volumes of reagents were added to acidified 0.05 $M MnO_4$ solution.

REAGENT	TEMPERATURE (°C)	REACTION TIME (S)
O.1 M Fe ²⁺	20	2
$0.1 \text{ M C}_2\text{O}_4^{2-}$	40	20

The factor that accounts for the longer reaction time for $C_2O_4^{2-}$ is :

- a) temperature
- b) surface area c) concentration
- d) nature of the reactants
- 21) Which of the following would increase the rate for the reaction,

$$Zn(s) + 2HCl(aq) \rightarrow H_2(g) + ZnCl_2(aq)$$

- a) increase the temperature
- b) decrease the temperature
- c) increase the pressure
- d) decrease the pressure
- 22) The reaction: 2A + B + C -> D takes place through the following mechanism in which I_1 and I_2 are the reaction intermediates.

Step 1
$$A + B \rightarrow I_1$$
 slow
Step 2 $I_1 + A \rightarrow I_2$ fast
Step 3 $I_2 + C \rightarrow D$ fast

How can you produce a significant increase in the overall reaction rate ?

- a) increase [B] b) decrease [B] c) increase [C] d) decrease [A]
- 23) Explain how a catalyst increases the rate of a chemical reaction.
- 24) Which of the following reactions would be expected to proceed at the greatest rate at room temperature?
- a) $Mg(s) + (1/2)O_2(g) -> MgO$
- b) $Br_2(g) + Cl_2(g) -> 2BrCl(g)$
- c) $2Ag^{+}(aq) + CrO_4^{2-}(aq) -> Ag_2CrO_4(s)$
- d) $2BrO_3^-(aq) + 10Fe^{2+}(aq) + 12H^+(aq) -> 10Fe^{3+}(aq) + Br_2(aq) + 6H_2O(l)$
- 25) Which of the following is true for an activated complex?
- a) stable and high PE
- b) stable and low PE
- c) unstable and high PE
- d) unstable and low PE
- 26) Phosphorus ignites readily on exposure to the air, according to the equation :

$$P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$$
 H = -2980 kJ/mol

At a given temperature, which of the following set of factors determines the rate of the above reaction?

- a) the partial pressure of oxygen only
- b) the concentration of phosphorus and the volume of oxygen
- c) the concentration of phosphorus and the partial pressure of oxygen
- d) the surface area of the phosphorus and the partial pressure of oxygen
- 27) When the temperature of a gaseous mixture is increased from 10°C to 20°C, it is found that the reaction rate is doubled. Which of the following could be deduced from this information?
- a) at higher temperatures all collisions lead to reactions
- b) the average kinetic energy has been doubled by increasing T
- c) the frequency of effective collisions has been doubled
- d) the activation energy has been reduced by increasing T

28) Describe two ways of increasing the rate of the following reaction, other than by using a catalyst, and explaining in terms of molecular behavior why each method would be successful.

$$2NOCI(g) -> 2NO(g) + CI_2(g)$$
 H = -56 kJ

Answers: 1) c, 2) b, 3) c, 4) a, 5) c, 6) c, 7) b, 8) c, 9) b, 10) d(single step) 11) b, 12) a, 13) b, 14)a) add more H+, powder Zn(s), increase T, b) 3.3kJ, 15) 2, rate quadruples, 16) b, 17) c, 18) b, 19) It is a short-lived molecule formed at the potential energy peak during a collision, 20) d, 21) a, 22) a, 23) It lowers the activation energy of a collision., 24) c, 25) c, 26) d, 27) c, 28) Increase T, or increase [NOCI]. Both will increase the collision rate between reactant molecules which increases the reaction rate.